Evaluation of a low-cost, 3D-printed model for bronchoscopy training.

نویسندگان

  • Matteo Parotto
  • Joshua Qua Jiansen
  • Ahmed AboTaiban
  • Svetlana Ioukhova
  • Alisher Agzamov
  • Richard Cooper
  • Gerald O'Leary
  • Massimiliano Meineri
چکیده

BACKGROUND Flexible bronchoscopy is a fundamental procedure in anaesthesia and critical care medicine. Although learning this procedure is a complex task, the use of simulation-based training provides significant advantages, such as enhanced patient safety. Access to bronchoscopy simulators may be limited in low-resource settings. We have developed a low-cost 3D-printed bronchoscopy training model. METHODS A parametric airway model was obtained from an online medical model repository and fabricated using a low-cost 3D printer. The participating physicians had no prior bronchoscopy experience. Participants received a 30-minute lecture on flexible bronchoscopy and were administered a 15-item pre-test questionnaire on bronchoscopy. Afterwards, participants were instructed to perform a series of predetermined bronchoscopy tasks on the 3D printed simulator on 4 consecutive occasions. The time needed to perform the tasks and the quality of task performance (identification of bronchial anatomy, technique, dexterity, lack of trauma) were recorded. Upon completion of the simulator tests, participants were administered the 15-item questionnaire (post-test) once again. Participant satisfaction data on the perceived usefulness and accuracy of the 3D model were collected. A statistical analysis was performed using the t-test. Data are reported as mean values (± standard deviation). RESULTS The time needed to complete all tasks was 152.9 ± 71.5 sec on the 1st attempt vs. 98.7 ± 40.3 sec on the 4th attempt (P = 0.03). Likewise, the quality of performance score improved from 8.3 ± 6.7 to 18.2 ± 2.5 (P < 0.0001). The average number of correct answers in the questionnaire was 6.8 ± 1.9 pre-test and 13.3 ± 3.1 post-test (P < 0.0001). Participants reported a high level of satisfaction with the perceived usefulness and accuracy of the model. CONCLUSIONS We developed a 3D-printed model for bronchoscopy training. This model improved trainee performance and may represent a valid, low-cost bronchoscopy training tool.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Evaluation on the Free Vibration of Functionally Graded Material Plates Using 3D Solution and Meta-Model Methods

This paper presents a probabilistic assessment on the free vibration analysis of functionally graded material plates, including layers with magneto-electro-elastic properties, using the 3D solution and surrogate models. The plate is located on an elastic foundation and the intra-layer slipping effect is also considered in the analysis by employing the generalized intra-layer spring model. Due t...

متن کامل

Use of a 3D printer to create a bolus for patients undergoing tele-radiotherapy

Background: This study describes the possibility of implementing three-dimensional printing technology to create a precise construction of a planned bolus, based on computed tomography information stored in the Digital Imaging and Communications in Medicine (DICOM) format file. Materials and Methods: &nbsp;To create the bolus with a 3D printer, we converted data in the DICOM format to the s...

متن کامل

PreOp endoscopic simulator: a PC-based immersive training system for bronchoscopy.

The high cost of simulators that offer adequate realism for training has been a major challenge for the simulation community. The cost of the computers alone has been too high for most training institutions to afford. We have met this challenge by developing the PreOp Endoscopic Simulator, our second generation of low-cost medical simulators. The PreOp system integrates multimedia, 3D graphics ...

متن کامل

New Low Cost Printed Antenna CPW-Fed for Global Positioning System, Personal Communication System and Worldwide Interoperability for Microwave Access Band Applications (TECHNICAL NOTE)

This paper presents a new design of a CPW-Fed multi bands planar antenna. This antenna can be integrated easily with passive and active elements. The proposed antenna is suitable to operate for GPS, PCS and WiMAX bands. Its entire area is 52.3x52.6mm2 and is employed on an FR-4 epoxy substrate and fed by a 50 Ohm coplanar line. The antenna parameters have been analyzed and optimized by using AD...

متن کامل

Development of the Improving Process for the 3D Printed Structure

The authors focus on the Fused Deposition Modeling (FDM) 3D printer because the FDM 3D printer can print the utility resin material. It can print with low cost and therefore it is the most suitable for home 3D printer. The FDM 3D printer has the problem that it produces layer grooves on the surface of the 3D printed structure. Therefore the authors developed the 3D-Chemical Melting Finishing (3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Anaesthesiology intensive therapy

دوره 49 3  شماره 

صفحات  -

تاریخ انتشار 2017